Таким образом, получено интегральное уравнение (22), алгоритмы численного решения которого хорошо известны. В данной задаче удобно использовать интерполяционный метод Крылова-Боголюбова, согласно которому интегральное уравнение сводится к системе линейных алгебраических уравнений при кусочно-постоянной аппроксимация неизвестной функции. Для этого вибратор делится на N конечных элементов, которые в силу оговоренной выше малой ширины вибратора располагаются только вдоль оси X. Считая неизвестную функцию постоянной в пределах каждого конечного элемента и согласовывая решение в их средних точках, можно перейти к системе уравнений:
(26) |
где
Решая полученную систему уравнений, можно найти распределение электрического заряда по металлическому вибратору, через которое находятся все интегральные характеристики излучателя в решетке: парциальная диаграмма направленности, входное сопротивление и другие. При не очень малых размерах конечных элементов матрица системы будет хорошо обусловленной, так как выделение особенности ядра интегрального уравнения приводит к доминированию по абсолютной величине диагональных элементов над остальными элементами матрицы системы.
Необходимо отметить, что в данном методе характеристики излучателя определяются через распределение заряда на поверхности вибратора, а не тока, как это делается во многих родственных задачах. Основное достоинство метода заключается в более быстрой сходимости исследуемых характеристик излучателей при заданной точности расчета. Это связано о тем, что выбранный аппроксимирующий полином для описания распределения заряда эквивалентен полиному для тока, степень которого на единицу больше. Известно, что интегральные характеристики излучателей обладают лучшей сходимостью по сравнению с распределением тока при численном решении граничных задач. В данном случае само распределение тока является интегральной характеристикой распределения заряда, что и определяет преимущества метода.
Разработанная методология анализа антенных решеток с печатными излучателями явилась основой для создания программы расчета характеристик вибраторной ФАР в печатном исполнении. На рис.2 приведены результаты численного решения тестовой задачи определения электрического заряда на вибраторе излучателя решетки с параметрами: dx= 0,6, dy= 0,25, a= 0,5, b= 0,03, c= 0,01, z0= 0,15, ε1= 4, ε2=ε3= 1, φ= 900, θ= 50.
Рис.2