ГлавнаяКарта сайтаНапишите намПоиск по сайту
EDS-Soft
ElectroDynamic Systems Software ScientificTM
Radiolocation Systems ResearchTM



Antenna Array


Дальняя зона антенны

Зона, расположенная на расстоянии более ста длин волны, на которой работает антенна.

(из «Словаря терминов» нашего сайта)






Виктор Иванович Чулков, ведущий научный сотрудник Калужского НИИ.
Является автором и руководителем проекта “EDS–Soft” (с 2002 года).
1/ 2/ все страницы

Использование ленточных излучателей в антенных решетках



Опубликовано: 25.08.2003
Оригинал: Радиотехника и электроника (Москва), 1992, №5, с.834...840
© В. И. Чулков, 1992. Все права защищены.
© EDS–Soft, 2003. Все права защищены.


Необходимо отметить, что полученные формулы связывают два режима работы АР: коэффициенты определяются при возбуждении всей АР, а ДН — при возбуждении одного излучателя. В дальнейшем для простоты обозначим одной и той же буквой и угол фазирования решетки и текущий угол ДН. Кроме того, нельзя забывать, что коэффициенты являются функциями искомого тока и, следовательно, неявно зависят от всех учитываемых гармоник Флоке, поэтому и ДН также зависит от них. Наличие в выражении для ДН только одной (нулевой) гармоники Флоке отражает то обстоятельство, что в области видимых углов при условии 0,5 (Т — период решетки) только эта гармоника будет быстрой. При >0,5 существуют две (и более) гармоники Флоке, фазовые скорости которых больше скорости света. При этом каждая из этих гармоник может быть использована для описания одной и той же диаграммы, совпадающей с диаграммой нулевой гармоники.

Пусть ЛП длиной L находится в свободном пространстве (=0) в составе АР на расстоянии от поверхности, на которой задан комплексный поверхностный импеданс (рис.1). Для простоты будем считать, что фазы полей отсчитываются от этой поверхности. Пусть излучатели имеют малые электрические размеры () и кроме того близко расположены к импедансу (). При периоде АР Т=L и условии для выявления принципиальных свойств такого излучателя заменим реальное сосредоточенное возбуждение решетки равномерно распределенным, считая, что одна клемма возбуждения включена в ЛП при х=-T/2, а вторая — при х=Т/2 и между клеммами приложено напряжение . При этом в видимой области углов и среде без потерь действительная часть ВС представляет собой сопротивление излучения, а в остальном секторе углов ВС чисто мнимое. Ограничимся нулевой гармоникой Флоке в представлении всех полей и равномерным по амплитуде электрическим током. При этом для ВС можно записать следующее выражение:

(10)

где , — площадь периода АР,

— ширина ЛП.

Анализ выражения (10) показывает, что при действительная часть ВС не зависит от частоты и , а мнимая — пренебрежимо мала.

При =0 и ВС в РПЧ чисто активное и также не зависит от частоты, причем при полном согласовании излучателя на угле ==0 в главных плоскостях справедливы следующие равенства:

— E-плоскость

— H-плоскость

Таким образом, реализовав поверхностный импеданс с указанными выше свойствами (), можно создать широкополосную и широкоугольную АР из технологичных малогабаритных излучателей микрополоскового типа.

Самое простое решение — поместить ЛП над идеально проводящим экраном на высоте =0,25, ( — длина волны, соответствующая середине РПЧ). При этом =0, =-1, =1, а в выражении (10) следует полагать , , =0:


Рис.2 ДН (сплошные линии) и модуль КО ЛП (штриховые линии) в H-плоскости в составе АР над экраном, 1 − f=, 2 − f=1,175, 3 − f=1,35=, 4 − f=1,525, 5 − f=1,7

На рис.2 приведены рассчитанные на ЭВМ ДН и модуль КО в H-плоскости для ЛП при L=0,03, =0,015 ( — длина волны на нижней частоте РПЧ). Период решетки Т=0,0З. В разложении тока учтены три гармоники вида (7) и 242 члена суммы в разложении полей, излучатель согласован на частоте f= (кривая 3). В полосе частот от до 1,7 величина изменяется в интервале от 2,78 до -1,78. Излучатель имеет в полосе частот с перекрытием p=1,44 в секторе углов ?50° и возбуждается -генератором, который включен в середину ЛП, с , где — амплитуда падающей волны.

Импедансной структурой с не зависящим от поперечных координат импедансом может быть также слой магнитодиэлектрика на экране. Если толщина t этого слоя удовлетворяет неравенству

(11)

где , — относительные магнитная и диэлектрическая проницаемости слоя, то величина его поверхностного импеданса

при (что в совокупности с условием (11) соответствует ) удовлетворяет требованию, необходимому для эффективной работы излучателя в АР. Для того, чтобы избежать возникновения поверхностной волны в магнитодиэлектрическом слое в области видимых углов, период АР должен подчиняться условию


Рис.3 ДН (сплошные линии) и модуль КО ЛП (штриховые линии) в E-плоскости в составе АР на слое магнитодиэлектрика, 1 − f=, 2 − f=1,5, 3 − f=2, 4 − f=2,5, 5 − f=3

На рис.3 при тех же аппроксимациях тока, поля и возбуждения приведены расчетные характеристики в E-плоскости ЛП при L=0,05 в слое магнитодиэлектрика толщиной t==0,016 с =10, =2 (в полосе частот примерно до 75 МГц такую магнитную проницаемость имеет магнитомягкая резина на основе каучука СКИ-3, содержащая 90 весовых % порошка феррита 600 НН [7]). Как следует из работы [7], в этой полосе частот магнитные потери практически отсутствуют, а электрические — не больше 0,2. Период решетки Т=0,05, согласование излучателя осуществляется на частоте (кривая 3). В полосе частот от до 3 величина изменяется от 1,08 до 9,9. Здесь отмечается лучшее согласование излучателя в полосе частот и секторе углов (р=2 и сектор ±60°), чем в предыдущем случае (рис.2), причем, как показал численный эксперимент, КПД излучателя составляет не менее 0,92 в рабочем секторе углов и диапазоне длин волн.

В совокупности с более широкой РПЧ и сектором углов применение магнитодиэлектрика позволяет существенно (в рассматриваемом здесь случае — на порядок) снизить высоту расположения излучателя над экраном. При еще большем увеличении относительной магнитной проницаемости эта высота стремится к нулю, а коэффициент перекрытия по частоте приблизительно равен . С физической точки зрения слой магнитодиэлектрика при условии можно рассматривать как приближение к магнитному экрану (на поверхности слоя ). Зеркальные изображения электрического тока относительно границы «магнитодиэлектрик — свободное пространство» и относительно экрана будут при этом находиться в таких фазах с самим током, при которых поля от всех токов над решеткой складываются и обеспечивают работоспособность рассмотренных излучателей в составе АР.

Выводы.

Можно считать принципиально возможным создание сверхширокополосной (октава и более) и широкосекторной (около 120° в главных плоскостях) АР, если вместо традиционно используемых резонансных микрополосковых излучателей применять излучатели малых электрических размеров, размещенные над комплексным импедансом с в РПЧ.


1/ 2/ все страницы

Использованная литература

1. Воскресенский Д.И., Филиппов B.C. // Антенны // Под ред. Воскресенского Д.И. М.: Радио и связь, 1985, вып.32, c.4.
2. Фельд Я.Н., Бененсон Л.С. Антенно–фидерные устройства. ч.2, М.: ВВИА им. Н.Е. Жуковского, 1959.
3. Амитей Н., Галиндо В., By Ч, Теория и анализ фазированных антенных решеток. М.: Мир.
4. Филиппов B.C. // Антенны // Под ред. Воскресенского Д.И.— М.: Радио и связь, 1985. вып.32, с.17.
5. Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн.— М.: Радио и связь, 1983.
6. Бененсон Л.С. // ЖТФ, 1952. т.22, №4, с.560.
7. Алексеев А.Г., Корнев А.Е. Эластичные магнитные материалы.— М.: Химия, 1987.

Статьи за 2003 год

Все статьи

RefereesHelp Race 1.5.7

RefereesHelp Race™ является профессиональным решением по учету данных о проведении соревнований по бегу, плаванию или лыжным гонкам.


Подписка



Изменение параметров подписки


 




 
 
EDS-Soft

© 2002-2024 | EDS-Soft
Контакты | Правовая информация | Поиск | Карта сайта

© дизайн сайта | Андрей Азаров